Plot DCA Object with ggplot
dca object created with dca()
indicates type of plot to produce. Must be one of
c("net_benefit", "net_intervention_avoided", "standardized_net_benefit").
The default is
"net_benefit", unless the net intervention has been calculated
when "net_intervention_avoided" is used, or if "standardized_net_benefit"
has been calculated.
Logical indicator whether plot will be smooth with
ggplot2::stat_smooth(). Default is FALSE
when smooth = TRUE, Controls the amount of smoothing for
loess smoother. Smaller numbers produce wigglier lines, larger numbers
produce smoother lines. Default is 0.2.
Must be one of c("color", "bw"). Default is "color", and
"bw" will print a black and white figure
Logical indicating whether to print ggplot2 code used to
create figure. Default is FALSE. Set to TRUE to perform advanced figure
customization
not used
a ggplot2 object
p <-
dca(cancer ~ cancerpredmarker, data = df_binary) %>%
plot(smooth = TRUE, show_ggplot_code = TRUE)
#> # ggplot2 code to create DCA figure -------------------------------
#> as_tibble(x) %>%
#> dplyr::filter(!is.na(net_benefit)) %>%
#> ggplot(aes(x = threshold, y = net_benefit, color = label)) +
#> stat_smooth(method = "loess", se = FALSE, formula = "y ~ x",
#> span = 0.2) +
#> coord_cartesian(ylim = c(-0.014, 0.14)) +
#> scale_x_continuous(labels = scales::percent_format(accuracy = 1)) +
#> labs(x = "Threshold Probability", y = "Net Benefit", color = "") +
#> theme_bw()
p
# change the line colors
p + ggplot2::scale_color_manual(values = c('black', 'grey', 'purple'))